EXERCICE 1
Difficulté : moyenne.
Longueur : normale.
Thémes abordés : (schéma de \textsc{Bernoulli}, probabilités conditionnelles)
- Schéma de \textsc{Bernoulli}.
- Probabilités conditionnelles.
- Utilisation d'un arbre de probabilités.
- Formule des probabilités totales.
- Inverser une probabilité conditionnelle.
- Schéma de \textsc{Bernoulli}.
- Déterminer le plus petit entier $n$ tel que $1-\left(\dfrac{7}{10}\right)^n\geqslant0,99$.
- Espérance de la variable aléatoire \og gain algébrique \fg. Interprétation du résultat.